Disproof of a coefficient estimate related to Bazilevic functions
نویسندگان
چکیده
منابع مشابه
On Generalized Bazilevic Functions Related with Conic Regions
Let A denote the class of analytic functions f z defined in the unit disc E {z : |z| < 1} and satisfying the conditions f 0 0, f ′ 0 1. Let S denote the subclass of A consisting of univalent functions in E, and let S∗ and C be the subclasses of Swhich contains, respectively, star-like and convex in Bazilevič 1 introduced the class B α, β, h, g as follows. Let f ∈ A. Then, f ∈ B α, β, h, g , α, ...
متن کاملOn a New Subfamilies of Bazilevic Functions
In this paper, the author make use of the newly introduced concept of analytic functions by Kanas and Ronning [7] and apply Aouf et al derivative operator with the technique of Hayami, Owa and Srivastava [17] to define a more larger and generalized class of Bazilevic functions. Characterization and coefficient bounds of this new class of Bazilevic functions are considered. 2000 Mathematics Subj...
متن کاملA lower estimate of harmonic functions
We shall give a lower estimate of harmonic functions of order greater than one in a half space, which generalize the result obtained by B. Ya. Levin in a half plane.
متن کاملDisproof of a Conjecture on Univalent Functions
We disprove the Gruenberg-RRnning-Ruscheweyh conjecture, namely that Re d g z (z) > 0; jzj < 1; holds for g 2 S, the set of normalized univalent functions in the unit disk D , and d analytic with jd 0 (z)j Re d(z) in D , d(0) = 1. Here stands for the Hadamard product.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Australian Mathematical Society
سال: 1990
ISSN: 0004-9727,1755-1633
DOI: 10.1017/s0004972700028215